Variation in shoot tolerance mechanisms not related to ion toxicity in barley

by Joanne Tilbrook, Rhiannon K. Schilling, Bettina Berger, Alexandre F. Garcia, Christine Trittermann, Stewart Coventry, Huwaida Rabie, Chris Brien, Martin Nguyen, Mark Tester And Stuart J. Roy
Year: 2017 ISSN: 1445-4416

Bibliography

Joanne Tilbrook, Rhiannon K. Schilling, Bettina Berger, Alexandre F. Garcia, Christine Trittermann, Stewart Coventry, Huwaida Rabie, Chris Brien, Martin Nguyen, Mark Tester and Stuart J. Roy. Variation in shoot tolerance mechanisms not related to ion toxicity in barley. Functional Plant Biology. https://doi.org/10.1071/FP17049

Abstract

Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+:Na+ ratios).

Keywords

Salt tolerance Plant phenomics Plant growth Osmotic stress Hordeum spp.