Course B390B: Special Topics, for 3 credits

Salinity tolerance: a case study in plant physiology and adaptation

Course leader: Professor Mark Tester

The **aim** of this course is two-fold:

- i) to present a comprehensive overview of plant responses to salinity and the many adaptations plants have evolved to salinity
- ii) to provide an overview of plant physiology and anatomy, this being done in the process of understanding mechanisms of salinity tolerance

The course is a graduate level course, and requires a basic understanding of biology and chemistry.

Contact: Timetabled to be 3 hours/week, 10.30-12.00 on Tuesday & Thursday from 19 August to 4 Dec. NOTE: Due to the Center for Desert Agriculture's lab meetings on Thursday, the Thursday lectures will slide by 30mins, to be from 11.00-12.30. The Tuesday lectures will stay at 10.30-12.00.

- Overall, we will have 12 x 1.5 hour lectures; 8 x 1.5 hour student-driven tutorial sessions; and a range of other talks, tutorial sessions and exercises as outlined in the timetable below.
- Tutorials are an informal question-and-answer session, driven by students' questions.
- **Location**: Building 9, Room 2120 at least for the first lecture. Then Building 2, Room 5220
- **Assessment**: There will not be an exam during this course. The course will be assessed using the following four aspects:

1. Groups of 2-3 students will make a poster in which will be presented a proposal	
for a research project	25%
2. Individuals give a 20 min talk centered on 1 paper from the past year	25%
3. A written review (1,000 words) on a specific area of research	30%
4. Participation and engagement in the course	20%

The written essay can be related to the oral presentation, but must include consideration of at least 5 further primary research papers. The word count must be strictly adhered to; it refers to the body of text, and does not include title, references or figure legends. The essay is due by 5pm on 9 December. Students will lose 1 mark (out of the total of 30) for every hour after then. MT and SN will audit the topics for all work.

Course timetable

The first lecture will be in Building 9, Room 2120. Subsequent lectures will then all be in Building 2, Room 5220

Tues 19 Aug	Lecture 1. Background on salinity
Thurs 21 Aug	Lecture 2. Toxicity and tolerance
25-30 Aug	MT in Iran Two guest talks
Tues 26 Aug	Guest talk from Dr Sandra Schmoeckel
Thurs 28 Aug	Guest talk from Dr David Jarvis
Tues 2 Sept	Tutorial 1 – with SS, DJ, MT and SN
Thurs 4 Sept	Lecture 3. Methods to study tolerance I (SN)
Tues 9 Sept	Lecture 4. Methods to study tolerance II (SN)
Thurs 11 Sept	Tutorial 2
Tues 16 Sept	Lecture 5. Methods to study tolerance III (SN)
Thurs 18 Sept	Visiting Professor: Klaus Pillen
Tues 23 Sept	Tutorial 3
Thurs 25 Sept	Lecture 6. Osmotic tolerance I
Tues 30 Sept	Lecture 7. Osmotic tolerance II
Thurs 2 Oct	Tutorial 4 (Dr Negrão)
2-25 Oct	MT in Europe Work on poster presentations (with Dr Negrão)
	Tutorial 5 (with Dr Negrão) during this time, too
Tues 28 Oct	Group poster presentations
Thurs 30 Oct	Lecture 8. Ion exclusion I
Tues 4 Nov	Lecture 9. Ion exclusion II
Thurs 6 Nov	Tutorial 6
Tues 11 Nov	11.00-12.00 Prof Nils Stein, Distinguished Lecture
Thurs 13 Nov	Lecture 10. Ion exclusion III
Tues 18 Nov	Lecture 11. Tissue tolerance
Thurs 20 Nov	Tutorial 7
23-27 Nov	MT in Japan
Tues 25 Nov	Journal club presentations (with Dr Negrão)
Thurs 27 Nov	Journal club presentations (with Dr Negrão)
Tues 2 Dec	Lecture 12. Conclusions and summary
Thurs 4 Dec	Tutorial 8
7-9 Dec	Exam period – use time for completing essay. DUE 5pm on 9 Dec
Thurs 11 Dec	12.00-2.00 End-of-course lunch

Outline of lectures in more detail

1. Background on salinity

Outline of the course Saline soils – defining salinity Scale of the problem Cost of the problem KAUST's CDA-WDRC aims Symptoms of salinity toxicity – incl dicot and monocot leaf anatomy What are the toxic ions - toxicity and deficiency

2. Toxicity and tolerance

Why are the toxic ions toxic? Osmotic toxicity – inhibited growth Ionic toxicity – accelerated death Water use efficiency (WUE) and stomatal function Harvest index (HI) – starch storage and phloem function Plant variation in tolerance – different scales of variation Halophytes and glycophytes – salt exclusion and salt accumulation Surviving versus thriving Mechanisms of tolerance – overview Osmotic tolerance, ion exclusion, tissue tolerance, increased WUE, HI

3, 4 & 5. Methods to study tolerance – by Dr Sónia Negrão

Phenotyping salinity tolerance, including The Plant Accelerator Forward genetics – bi-parental, association, nested association, MAGIC Forward genetics – Mendelian genetics, quantitative genetics Reverse genetics The -omics (genomics, transcriptomics, proteomics, metabolomics)

Characterisation of genes – heterologous expression systems (bacteria, yeast, cell cultures, Xenopus)

Characterisation of genes – transgenics, mutants, natural variation Delivery of improved crops – marker-assisted selection, genetic modification

6 & 7. Osmotic tolerance

Rapid inhibition of growth, reducing rates of new leaf production Stomatal closure Inhibition of cytokinesis Cell signaling – changes in cytosolic Ca²⁺ activity Whole plant signaling – ROS waves, Ca²⁺ waves, electrical signals The Plant Accelerator for quantifying osmotic tolerance Forward genetic studies of osmotic tolerance Relationship to yield in the field Water use efficiency and harvest index

8, 9 & 10. Ion exclusion

Correlation between leaf blade [Na⁺] and tolerance Ion transport – thermodynamics Ion transport – mechanisms Na⁺ entry, Ca²⁺-sensitive Na⁺ transport, non-selective cation channels Root sequestration of Na⁺ Root-to-shoot transfer of Na⁺ - root anatomy, transport thermodynamics The role of *HKT1* in controlling root-to-shoot Na⁺ transport Forward genetic approaches to studying Na⁺ transport -omics approaches to studying Cl⁻ transport

11. Tissue tolerance

Intracellular compartmentation of Na⁺ - accumulation in the vacuole Compatible solutes – synthesis and accumulation in the cytoplasm Inter-cellular compartmentation of Na⁺ - accumulation in the epidermis Intra-shoot compartmentation of Na⁺ - sacrificing old leaves Salt glands Halophytes and glycophytes

12. Conclusions

As it says!

Example areas for Presentations and Essays

- HKT Original studies
 Stelar-specific over-expression
 Introgression into durum wheat
 HKT in rice
 Field trials
- AVP Original studies the biochemistry
 Original studies identifying the genes
 Transgenic work tomato, barley, etc
 Forward genetic studies in barley
 The real *in planta* function of AVP
 Field trials
- CIPK SOS3/SOS2/SOS1 The overall CIPK gene family SOS2 and its mechanism of action AtCIPK16 – the forward genetics work Field trials

Role of epigenetics in salinity tolerance e.g. the papers of: Suter & Widmer (2013) *PLoS ONE* **8**(4): e60364 Sani et al. (2013) *Genome Biology* **14**: R59 Where are the field trials?!

In addition to the primary and review literature provided during lectures, the following textbook also provides useful background information: Taiz & Zeiger (2010) *Plant Physiology*, 5th edition <u>http://www.coursesmart.com/IR/6071481/9780878938667? hdv=6.8</u>